Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.
نویسندگان
چکیده
Environmental pollution, global warming and climate change exacerbate the impact of biotic and abiotic stresses on plant growth and yield. Plants have evolved sophisticated defence network, also called innate immune system, in response to ever- changing environmental conditions. Significant progress has been made in identifying the key stress-inducible genes associated with defence response to single stressors. However, relatively little information is available on the signaling crosstalk in response to combined biotic/abiotic stresses. Recent evidence highlights the complex nature of interactions between biotic and abiotic stress responses, significant aberrant signaling crosstalk in response to combined stresses and a degree of overlap, but unique response to each environmental stimulus. Further, the results of simultaneous combined biotic and abiotic stress studies indicate that abiotic stresses particularly heat and drought enhance plant susceptibility to plant pathogens. It is noteworthy that global climate change is predicted to have a negative impact on biotic stress resistance in plants. Therefore, it is vital to conduct plant transcriptome analysis in response to combined stresses to identify general or multiple stress- and pathogen-specific genes that confer multiple stress tolerance in plants under climate change. Here, we discuss the recent advances in our understanding of the molecular mechanisms of crosstalk in response to biotic and abiotic stresses. Pinpointing both, common and specific components of the signaling crosstalk in plants, allows identification of new targets and development of novel methods to combat biotic and abiotic stresses under global climate change.
منابع مشابه
Papaya Dieback in Malaysia: A StepTowards A New Insight of Disease Resistance
A recently published article describing the draft genome of Erwiniamallotivora BT-Mardi (1), the causal pathogen of papaya dieback infection in Peninsular Malaysia, hassignificant potential to overcome and reduce the effect of this vulnerable crop (2). The authors found that the draft genome sequenceis approximately 4824 kbp and the G+C content of the genomewas 52-54%, which is very similarto t...
متن کاملPlant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms.
Plants are constantly confronted to both abiotic and biotic stresses that seriously reduce their productivity. Plant responses to these stresses are complex and involve numerous physiological, molecular, and cellular adaptations. Recent evidence shows that a combination of abiotic and biotic stress can have a positive effect on plant performance by reducing the susceptibility to biotic stress. ...
متن کاملCrosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks.
Plants have evolved a wide range of mechanisms to cope with biotic and abiotic stresses. To date, the molecular mechanisms that are involved in each stress has been revealed comparatively independently, and so our understanding of convergence points between biotic and abiotic stress signaling pathways remain rudimentary. However, recent studies have revealed several molecules, including transcr...
متن کاملIdentification of Arabidopsis Candidate Genes in Response to Biotic and Abiotic Stresses Using Comparative Microarrays
Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases...
متن کاملThe interface between abiotic and biotic stress responses.
Organisms are under strong selection to respond adaptively to environmental stress, even when different stresses occur simultaneously or in rapid succession, as they often do in natural environments. However, at a molecular level, stress responses are often studied in isolation and under controlled growth conditions. This leaves us with an ever-finer picture of single stress responses but littl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current issues in molecular biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2017